Körperliche Bewegung – ein Heilmittel gegen Müdigkeit?

Bewegung bei Darmkrebspatienten während der Behandlung

Autor: Vivien Gireg

Fuß, Abstandhalter, Der Pfad, Senior, Zusammen

Das kolorektale Karzinom gehört zu den drei häufigsten Krebsarten weltweit. Allein 2018 gab es über 1,8 Millionen neu diagnostizierte Fälle (Global Cancer Observatory, 2019). Der Darmkrebs beginnt als ein verstärktes Gewebswachstum in der Innenschicht des Kolons oder des Rektums. Dieses Gewebswachstum, auch Polyp genannt, kann bösartig werden und folglich in Blut- oder Lymphgefäße einwachsen und sich dadurch im Körper verteilen und metastasieren (Marley & Nan, 2016). Die Überlebensrate ist zwar durch die medizinischen Fortschritte gestiegen, jedoch erleben die Patienten dabei schwerwiegende Symptome (Macleod et al., 2017, S. 1).

Eines der häufigsten Symptome, die Patienten mit dieser Art von Krebs erleben, ist die Fatigue (Aapro, Scotte, Bouillet, Currow & Vigano, 2016). Anders als die Müdigkeit, die eine gesunde Person verspürt, lässt sich die Krebs-assoziierte Erschöpfung oder Fatigue durch Schlaf nicht verbessern und kann von der Erstdiagnose bis Jahre nach Behandlungsabschluss persistieren, wobei sie meistens während der Behandlungszeit am stärksten vorhanden ist (Bower, 2014). Das konstante Gefühl der Müdigkeit reduziert die Qualität des Lebens dieser Patienten stark. In einem qualitativen Review beschrieben Patienten mit Krebs die Krebs-assoziierte Fatigue als überwältigend und allumfassend, als ob jemand das Ladekabel aus der Steckdose gezogen hätte oder der Sprit ausgegangen wäre. Ganz einfache Tätigkeiten wie Essen zu sich zu nehmen, zu gehen oder ganz einfach den Fernseher einzuschalten sind durch die Müdigkeit zur Herausforderung geworden. Am häufigsten erwähnten die Patienten den emotionalen Frust den sie durch die Limitationen in körperlichen, kognitiven und sozialen Aspekten verspürten (Scott, Lasch, Barsevick & Piault-Louis, 2011). 

Es gibt Möglichkeiten, diesem Symptom entgegenzuwirken und dadurch die Qualität des Lebens dieser Menschen zu verbessern. Vor allem in der Behandlungszeit, in der die Patienten am meisten unter der Fatigue leiden, ist eine Hilfestellung besonders wichtig. Auch wenn es paradox scheint, stellte sich durch die Forschung in den letzten drei Jahrzehnten Bewegung als ein effektives und sicheres Mittel gegen Krebs-assoziierte Fatigue heraus (Nyrop et al., 2016, Rock et al., 2012). In meiner Abschlussarbeit für den Bachelor in Pflegewissenschaft habe ich eine Literaturrecherche zu diesem Thema in den Datenbanken Medline (via PubMed), Cochrane Library und CINAHL complete (via Ebsco Host) in Deutsch und in Englisch im Zeitraum von April bis Juni 2019 durchgeführt. Ich habe insgesamt acht Studien gefunden, die die Auswirkung einer Bewegungsintervention bei Darmkrebspatienten auf deren Fatigue erforschten. Ich schloss nur Studien ein, bei denen die Darmkrebspatienten noch eine Behandlung erhielten, entweder eine Chemo- oder Strahlentherapie, da die Fatigue in der Behandlungszeit am Stärksten sein soll. 

In allen Studien übten die Teilnehmer Aerobic- und Widerstandsübungen aus, jedoch variierte die Intensität von niedrig bis hoch. Bewegungsübungen von niedriger Intensität sind Übungen mit einem Intensitätslevel von 12-14 auf der Borg Skala (van Waart et a., 2018). Das bedeutet, dass die Betroffenen sich für das Training ein wenig anstrengen müssen, sie sich dabei jedoch gut in der Lage fühlen, die Bewegungsübungen fortzusetzen und nicht außer Atem kommen (Williams, 2017). Ein Beispiel dafür wäre Brisk Walking. Die Übungen mittlerer Intensität haben in den Studien ein Intensitätslevel bis 15, und die der hohen Intensität bis 16 auf der Borg Skala (Lin et al., 2014; van Waart et al., 2018). Übungen hoher Intensität bedürfen einer enormen Anstrengung, Herz- und Atemfrequenz sind sehr hoch. Beispiele dafür sind Fahrradfahren oder Schwimmen (Borg, 1982). 

Die Patienten, die Bewegungsübungen niedriger Intensität durchführten, erzielten die besten Ergebnisse, vor allem auf die körperliche und mentale Fatigue bezogen (Shariati et al., 2010, van Waart et al., 2018). Ein Bewegungsprogramm mit mittel-intensiven Übungen machen in den Studien von Lin et al. (2014) und Singh et al. (2018) einen mäßigen bis gar keinen Unterschied auf das Fatigue-Level der Patienten. Intensive Bewegungsübungen können laut der Studie von van Waart et al (2018) zu einer Verbesserung der körperlichen Fatigue führen, jedoch die bereits reduzierte Aktivität der Patienten noch stärker reduzieren.

Außerdem trainierten die Teilnehmer in den Studien unterschiedlich lange, die Trainigsdauer reichte von vier Wochen bis 18 Wochen. Je länger die Patienten Sport betrieben, desto eher verbesserte sich ihre Müdigkeit (Lu et al., 2019, van Vulpen et al., 2015). Das Verhältnis der Patienten mit einer milden, moderaten und starken Fatigue veränderte sich bei den Patienten, die trainierten, signifikant (p<0,01) (Lu et al., 2019). Jedoch variiert nicht nur die Anzahl der Wochen, sondern auch die Bewegungsdauer pro Woche. Drei Studien erforschten Bewegung von bis zu 120 Minuten pro Woche. Zwei Studien befassten sich mit 150 Minuten an Bewegung pro Woche und drei weitere mit über 180 Minuten an wöchentlicher körperlicher Aktivität. Zwei Stunden an Bewegung pro Woche erzielte nur in einer von drei Studien eine signifikante Verbesserung der Fatigue (Brunet et al, 2017; Lin et al., 2014; Shariati et al., 2010). Eine von zwei Teilnehmergruppen konnte Verbesserungen der Müdigkeit bei bis zu 150 Minuten an Sport pro Woche erreichen (Singh et al. 2018; van Waart et al., 2018). Jedoch stellten die Patienten aller drei Interventionsgruppen, die mehr als 180 Minuten an Sport pro Woche betrieben, signifikante Verbesserungen der Müdigkeit fest (Lu et al., 2019; van Vulpen et al., 2015; van Waart et al, 2018).

Auch der Betreuungsgrad der Interventionen wurde in den Studien unterschiedlich gewählt. Eine Interventionsgruppe von Cheong et al. (2018) und van Waart et al. (2018) wurde von Krankenpflegern oder Physiotherapeuten professionell beraten, bei den Übungen jedoch nicht persönlich betreut. Die Fatigue der Patienten verbesserte sich in beiden Studien nach der Intervention. Betreute sowie teilweise betreute Bewegungstrainings wirkten sich im Vergleich dazu nicht in allen inkludierten Studien, die diese Interventionen durchführten, positiv aus (Brunet et al., 2017; Lin et al., 2014; Singh et al., 2018). Bei Patienten mit Darmkrebs, die sich einer Chemotherapie unterziehen, wird aufgrund ihres höheren Alters und der Toxizität der Chemotherapie eine geringere Einhaltung eines herkömmlichen Programms erwartet (Cheong et al., 2018). Aus diesem Grund kann es sein, dass ein Programm mit viel individuellem Management besser für Darmkrebspatienten geeignet ist. Zudem erhöht ein zuhause durchführbares Trainingsprogramm auch die Compliance der Krebspatienten (Windsor et al., 2004).

Schlussfolgerung

Die Bewegung ist ein sicheres und effektives Mittel gegen das belastende Symptom Fatigue und die Patienten sollten von den Ärzten, Pflegern und anderen Mitarbeitern in der Gesundheitsbranche darüber informiert werden. Auf den onkologischen Stationen werden die Patienten von dem Gesundheitspersonal jedoch eher selten zu körperlicher Aktivität motiviert (Nyrop et al., 2016). Dabei ist die Fatigue vor allem in der Behandlungszeit, in der sich die Patienten dort ambulant oder stationär aufhalten, am schwerwiegendsten (Bower, 2014). Oftmals liegt es daran, dass das Personal die Patienten als zu alt, unsportlich oder ungeeignet für ein Bewegungsprogramm erachtet, da Darmkrebspatienten häufig ein hohes Alter und mehr postoperative Komplikationen als zum Beispiel Brustkrebspatienten haben (van Waart et al., 2018). Doch nachdem Sie diesen Artikel nun gelesen haben, haben Sie einige Quellen zur Hand, bei denen Sie sich noch ins Detail informieren können, um Ihren Patienten in dieser schwierigen Lage professionelle Hilfe zur Selbsthilfe geben können. Die Zeit und Motivation für Bewegung aufzubringen ist vor allem für Patienten, die berufliche und familiäre Verpflichtungen haben, schwierig. Gerade deswegen ist es wichtig, dass diese von ihren professionellen Betreuern über Mittel informiert werden, mit denen sie sich selber helfen können und welche die Qualität ihres Lebens steigern (Nyrop et al., 2016). 

Literaturverzeichnis

Aapro, M., Scotte, F., Bouillet, T., Currow D., & Vigano, A. (2016).  A Practical Approach to Fatigue Management in Colorectal Cancer. Clinical Colorectal Cancer, 16(14), 275-285.

Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports an Exercise, 14(5), 377-381.

Bower, J. E. (2014). Cancer-related fatigue: mechanisms, risk factors, and treatments. Nature Reviews Clinical Oncology, 11(10), 597-609.

Brunet, J., Bruke, S., Grocott, M. P. W., West, M. A., & Jack, S. (2017). The effects of exercise on pain, fatigue, insomnia, and health perceptions in patients with operable advanced stage rectal cancer prior to surgery: a pilot trial. BMC Cancer, 17(1), 153-163.

Cheong, I. Y., An, S. Y., Cha, W. C., Rha, M. Y., Kim, S. T., Chang, D. K., & Hwang, J. H. (2018). Efficacy of Mobile Health Care Application and Wearable Device in Improvement of Physical Performance in Colorectal Cancer Patients Undergoing Chemotherapy. Clinical Colorectal Cancer, 17(2), 353-362. 

Global Cancer Observatory (2019). Colorectal Cancer, http://gco.iarc.fr/today/data/factsheets/cancers/10_8_9-Colorectum-fact-sheet.pdf (11.06.2019).

Lin, K. Y., Shun, S.-C., Lai, Y.-H., Liang, J.-T., & Tsauo, J.-Y. (2014). Comparison of the Effects of a Supervised Exercise Program and Usual Care in Patients With Colorectal Cancer Undergoing Chemotherapy. Cancer Nursing, 37(2), 21-29.

Lu, Y., Qu, H.-Q., Chen, F.-Y., Li, X.-T., Cai, L., Chen, S., & Sun, Y.-Y. (2019). Effect of Baduanjin Qigong Exercise on Cancer-Related Fatigue in Patients with Colorectal Cancer Undergoing Chemotherapy: A Randomized Controlled Trial. Oncology Research and Treatment, 42, 431-438. 

Macleod, M., Steele, R. J. C., O’Carroll, R. E., Wells, M., Campbell, A., Sugden, J. A., Rodger, J., Stead, M., McKell, J., & Anderson, A. S. (2018). Feasibility study to assess the delivery of a lifestyle intervention (TreatWELL) for patients with colorectal cancer undergoing potentially curative treatment. BMJ Open, 8(6), 1-11.

Marley, A. R., & Nan, H. (2016). Epidemiology of colorectal cancer. International Journal of Molecular Epidemiology and Genetics, 7(3), 105-114.

Nyrop, K. A., Deal, A. M., Williams, G. R., Guerard, E. J., Pergolotti, M., & Muss, H. B. (2016). Physical Activity Communication Between Oncology Providers and Patients With Early-Stage Breast. Colon, or Prostate Cancer. Cancer, 122(3), 470-476.

Rock, C. L, Doyle, C., Denmark-Wahnefried, W., Meyerhardt, J., Courneya, K. S., Schwartz, A. L., Bandera, E. V., Hamilton, K. K., Grant, B., McCullough, M., Byers, T., & Gansler, T. (2012). Nutrition and Physical Activity Guidelines for Cancer Survivors. A Cancer Journal for Clinicians, 62(4), 243-274.

Scott, J. A., Lasch, K. E., Barsevick, A. M., & Piault-Louis, E. (2011). Patients’ Experiences With Cancer-Related Fatigue: A Review and Synthesis of Qualitative Research. Oncology Nursing Forum, 38(3), 191-203.

Shariati, A., Haghighi, S., Fayyazi, S., Tabesh, H., & Kalboland, M. M. (2010). The effect of exercise on the severity of the fatigue in colorectal cancer patients who received chemotherapy in Ahwaz. Iranian Journal of Nursing and Midwifery Research, 15(4), 145-149. 

Singh, F., Galvao, D. A., Newton, R. U., Spry, N. A., Baker, M. K., & Taaffe, D. R. (2018). Feasibility and Preliminary Efficacy of a 10-Week Resistance and Aerobic Exercise Intervention During Neoadjuvant Chemoradiation Treatment in Rectal Cancer Patients. Integrative Cancer Therapies, 17(3), 952-959.

van Vulpen, J. K., Velthuis, M. J., Steins Bisshop, C. N., Travier, N., van den Buijs, B. J. W., Backx, F. J. G., Los, M., Erdkamp, F. L. G., Bloemendal, H. J., Koopman, M., de Roos, M. A. J., Verhaar, M. J., Ten Bokkel-Huinink, D., van der Wall, E., Peeters, P. H. M., & May, A. M. (2015). Effects of an Exercise Program in Colon Cancer Patients undergoing Chemotherapy. Medicine & Science in Sports & Exercise, 48(5), 767-775.

van Waart, H., Stuiver, M. M., van Harten, W. H., Geleijn, E., de Maaker-Berkhof, M., Schrama, J., Geenen, M. M., Meerum Terwogt, J. M., van den Heiligenberg, S. M., Hellendoorn-van Vreeswijk, J. A. J. H., Sonke, G. S., & Aaronson, N. K. (2018). Recruitment to and pilot results of the PACES randomized trial of physical exercise during adjuvant chemotherapy for colon cancer. International Journal of Colorectal Disease, 33(1), 29-40.

Williams, N. (2017). The Borg Rating of Perceived Exertion (RPE) scale. Occupational Medicine, 67(5), 404-405

Windsor, P. M., Nicol, K. F., & Potter J. (2004). A randomized, controlled trial of aerobic exercise for treatment-related fatigue in men receiving radical external beam radiotherapy for localized prostate carcinoma. Cancer, 101(3): 550-557.

 

A New (Old) Treatment for COVID-19

Image

12/4/20

Pandemic COVID-19.  What can/should we do?

Having reached nearly 1.8 million reported cases globally, with reported deaths of nearly 110,000 this pandemic is reaching all corners of the globe and affecting all sections of society.

The impact on each population is profoundly affected by the decisions made by local and federal governments to promote handwashing and early social distancing and the extent to which a society is able to comply with that.  The ultimate solution to the pandemic, an effective vaccine is 12-18 months away. At the other end of the clinical course, hospital and ICU staff are either struggling to find adequate PPE, beds, ventilators and new treatments to minimise the substantial morbidity and mortality or preparing for the surge in clinical needs depending on where their city is in the course of the spread of the virus.  The resources that are able to be amassed to fight end stage COVID-19 are vastly different depending on the health system of the country affected.  

COVID-19 has a known clinical course (with the obvious variation of asymptomatic carriage). On average around day 5 become symptomatic, get tested (if testing available in patients region), then go home to wait and see what happens.  If they are lucky they become one of the 80% who recover without hospitalisation or if not, around day 12, they will need to go into a hospital with resources stretched beyond capacity, and will have significantly worse morbidity and mortality.  There is no active treatment in this middle stage of the clinical course, the outcome of which predominantly depends on whether their innate immune function is able to overcome SARS CoV-2’s direct impairment. Fever is well known to enhance innate and adaptive immunity.  

In Newcastle, Australia, we are proposing research into whether heat applied to the body as a proxy for fever can alter the clinical course of COVID-19 and decrease the likelihood of hospitalisation and poor clinical outcomes.  This sort of research is incumbent upon clinicians and countries that have the wherewithal, to support the global fight against COVID-19. In other countries, clinicians may choose to act on biological plausibility and clinical imperative alone.

Immune Pathophysiology of Coronaviruses causing SARS, MERS and COVID-19

Coronavirus infections that result in SARS, MERS and COVID-19 show the viruses are able to actively impair the innate immune response, in particular the Type 1 interferon (IFN) response from infected cells (such as Type 2 alveolar cells and likely macrophages and T cells).  They also (either directly or as a result of decreased IFN Type 1) impair monocytes and other innate immune cells (eg natural killer cells) which are required to phagocytose virus and present it to lymphocytes to switch on adaptive immunity [1-3].  

…excessive type I IFN with the infiltrated myeloid cells are the main cause of lung dysfunction and negatively impact the outcome of the infection. It is speculated that upon SARS-CoV or MERS-CoV infection, delayed type I IFN compromises the early viral control, leading to influx of hyperinflammatory neutrophils and monocytes-macrophages. The increases in these innate immune cells yields deteriorating consequences to infected host that manifested in lung immunopathology, including pneumonia or acute respiratory distress syndrome. In SARS-CoV-2 infection, similar scenario is expected with varying degree of immune interference. Interestingly, transmission of virus is reported to occur even in asymptomatic infected individuals. This may be indicative of delayed early response of the innate immune response. Based on the accumulated data for previous coronavirus infection, innate immune response plays a crucial role in protective or destructive responses and may open a window for immune intervention. Active viral replication later results in hyperproduction type I IFN and influx of neutrophils and macrophages which are the major sources of pro-inflammatory cytokines. With similar changes in total neutrophils and lymphocytes during COVID19, SARS-CoV-2 probably induces delayed type I IFN and loss of viral control in an early phase of infection. Individuals susceptible to CoVID19 are those with underlying diseases, including diabetes, hypertension, and cardiovascular disease.2 In addition, no severe cases were reported in young children, when innate immune response is highly effective. These facts strongly indicate that innate immune response is a critical factor for disease outcome. [2]

Eighty percent of patients are able to overcome this direct innate immune suppression by the virus, mount a reasonable innate (and consequently a good adaptive) immune response and clear the virus. In about twenty percent of patients (predominantly those with impaired immunity to start with, for example – from age or obesity and it’s consequent diseases) this direct inhibition by the virus results in it being able to replicate relatively unchecked in the early days of the infection.  A few days to a week later, the body is confronted with large amounts of virus and there is an over exuberant immune response from the recruited neutrophils, monocytes and macrophages. The resultant hyperproduction of proinflammatory cytokines, the so-called “cytokine storm”, results in acute lung injury +/- ARDS +/- multi-organ failure +/- death [1-3]. See the diagram on the previous page.  

Early research has shown in vitro pretreatment of cells with IFN Type 1 in the days prior to infection shows a massive sustained reduction in viral replication and likely would result in a good in vivo result [4].   However IFN Type 1 is not yet an available experimental treatment. There are a number of other therapeutic trials showing promise with such treatments as vitamin C, plaquenil, zinc, even injection with natural killer cells etc but globally most patients are unable to access these as either in, or outpatients.   As for the case of the immune treatments like administered IFN or NK cells: what if we could do more than just increase one cytokine or cell line? What if we could activate the whole of the immune system?

How can we overcome immune inhibition by SARS CoV-2?

Fever is known to increase innate and acquired immune activity in multiple ways including:

  • increased release of heat shock proteins
  • increased phagocytic potential of dendritic cells and macrophages  
  • increased migration of APCs to regional lymph nodes, 
  • increased recruitment of neutrophils to lungs 
  • increased neutrophil activity
  • enhanced natural killer recruitment and activity  
  • increased numbers of lymphocytes. 

This is also true for induced hyperthermia eg  as created by injecting lipopolysaccharide (bacterial cell wall component) into mice or sitting in a warm bath for humans.[5,6] Hyperthermia not only optimises immune function it also directly inhibits viral replication [5].  Most importantly in the case of COVID-19, a number of studies have demonstrated that elevated body temperatures substantially augment Interferon Type 1 (IFNα) production/activity in response to viral infection [6-9] AND monocyte function[11] ie the immune processes that the virus directly inhibits.  By utilising induced hyperthermia to overcome the initial roadblocks that SARS-CoV-2 setup, the immune system is primed to proceed with a normal inflammatory response and clear the virus, rather than progress to inflammatory complications.

Fever is a good immune system enhancer as discussed above, however, there are two problems:  

  1. Not everyone mounts a good fever response to infection especially not the old and obese.  Immunosenescence (the decline in immune function with age, and obesity and its consequences) is mediated in part by impaired monocyte function[12,13]. 
  2. Fever is metabolically expensive with every degree of body temperature elevation requiring an increase in BMR of 10-12.5%.  

Mild hyperthermia induced by hydrotherapy potentially addresses both of these problems[5,11].

How can immune enhancement by hyperthermia help clinically?

The first week after diagnosis with COVID-19 infection is essentially being wasted at home.   If during that time we induced hyperthermia at home, with simple hydrotherapeutic techniques, we could directly stimulate the whole of the innate and adaptive immune response but in particular we may be able to partially or completely overcome the direct immune depressant effects of COVID-19 on INF and monocytes in the early days of infection.   If we are able to diminish the need for hospitalisation by even 5% of total infections that would be a 25% decrease in numbers requiring admission, substantially reducing the overstretched resources globally and will potentially save many lives. This potential treatment is even more important as an option for people in developing nations without a readily available hospital system, replete with ICU support.  

Hydrotherapy and COVID-19

Hydrotherapeutic hyperthermia can be induced in a number of ways, but one of the easiest  involves sitting in a warm to hot bath till sweaty, then having a douse of cold water to vasoconstrict the external vessels and keep the heat in, then resting in a warm bed for ½ an hour. The potential risks of this treatment include vasovagals due to vasodilation or arrhythmias induced by the cold water shock. Hydrotherapy is highly modifiable treatment   and can be performed with a patient in bed, in a chair or in a bath/shower with whatever is available to hand. It can also be adapted to suit the patients comorbidities and clinical status. Anecdotally, a physiotherapy colleague of mine has used therapeutic hyperthermia to good effect in many different situations around the globe. For example, by wrapping Karen refugees without access to any medical care, in black plastic to heat and then cooling off with a dip in the river for tropical PUO (likely Dengue or malaria).  When utilised in conjunction with standard medical care while working in a hospital in Bangkok, my colleague saw patients in hospital with Dengue fever fit to go home in 3 days when it usually took 7-10 days.

Could inducing a fever early just speed up the time to cytokine storm and not alter the clinical pathway at all?  

Reassuringly there is good evidence to suggest that early fever or induced hyperthermia plays a homeostatic role in managing the inflammatory course, and its outcomes, for good or ill. For example, thermal stress initially increases proinflammatory cytokine release from macrophages but, once they are activated, synthesis decreases. In addition, activated or “heat experienced” macrophages produce less TNF, IL6 and IL1beta in febrile temperatures, than heat inexperienced ones.[5]

What about those who are not infected but would like to optimise immune function today?  The evidence is a little less clear at a population rather than cellular level, (smaller studies, more observational, hard to blind people etc) but heat, then cold exposure has been shown to improve immune function, especially when used over longer periods [14,15,16]. 

A case report[17] followed the clinical course of a patient in Melbourne, Australia who recovered from COVID-19 after a brief hospitalisation.  There was a marked increase of adaptive immune cells around day 7, three days prior to alleviation of symptoms (still with noticeably low monocytes common to SARS CoV-2 infections).  It would be useful to have some comparative case studies showing what happens daily to the clinical course in COVID-19 with hydrotherapy. Taking a FBC at least on days 3 and 6 would show quickly whether immune suppression was taking place, or being overcome by the treatments and give a good prediction as to whether the patient was likely to need hospitalisation on day 12, or go on to make a good clinical resolution.  Case reports and historical records from when this treatment was used in the Spanish influenza pandemic suggest that the WCC should surge at day three (illustrating a rapid transition to acquired immunity) and bring about clinical resolution potentially around 4 days earlier than without hydrotherapy. 

It is worth noting that practicing Evidence Based Medicine is an excellent thing that helps keep us and our patients safe.  However during this pandemic ICUs and health care workers around the globe are just trying to figure out what works. There are no long term, multicentre RCTs to guide us at this stage, just clinical experience that guides expert opinion.  Once anecdotal evidence mounts, it is guiding smaller clinical trials and RCTs in regional centres. There are just too many lives to try to save to waste time waiting for someone else to deliver gold standard evidence. Not having an RCT to support a type of treatment is not stopping intensive care clinicians from trying any therapeutic modality that makes physiological sense and is available to hand.  I believe in this situation, primary care physicians, public health physicians and ID physicians should be following their lead. 

Treatment/Research Plans…

As we are making good progress in “flattening the curve” in Australia we have the opportunity to formally assess whether immune stimulation by mild hyperthermia from hydrotherapy can alter clinical outcomes.  Not every country or city is in our position. Some clinicians may choose to trial this old/new treatment for infectious disease without recent trials. This therapy is scientifically plausible, at little to no cost, readily available, and can be safely utilised by patients in their own homes with a little education and common sense.  Like all treatments hydrotherapy is not without risks eg falls from postural hypotension or arrythmias triggered by cold stimulation. If clinicians and patients are aware of the risks and contraindications to this therapy it can be considered on a case by case basis.

Detailed protocols, as well as precautions/contraindications, are available at hydro4covid.com.  This information is based on clinical experience and historical textbooks/records of treatment of the Spanish Influenza pandemic.   These protocols, used with care, can be utilised to possibly:

  1. help keep patients out of hospital (more acute care for those who really need it) 
  2. diminish asymptomatic and presymptomatic shed in the community (slow community spread) especially in the young who are at least risk from this illness and are the most likely to share it without knowing it
  3. optimise our own immune function to help keep us all working safely as long as is required..

Author: Dr Emma Campbell BMed FRACGP

 

Bibliography

Highlighted in bold are the two most useful resources, if you only have time to look at a couple of papers.

  1. Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, Mack M, Sompallae R, McCray PB Jr, Meyerholz DK, Perlman S. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest. 2019 Jul 29;130:3625-3639. doi: 10.1172/JCI126363. eCollection 2019 Jul 29. PubMed PMID: 31355779; PubMed Central PMCID: PMC6715373.
  2. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020 Mar;38(1):1-9. doi: 10.12932/AP-200220-0772. Review. PubMed PMID: 32105090.
  3. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017 Jul;39(5):529-539. doi: 10.1007/s00281-017-0629-x. Epub 2017 May 2. Review. PubMed PMID: 28466096; PubMed Central PMCID: PMC7079893.
  4. Lokugamage KG, Schindewolf C, Menachery VD. SARS-CoV-2 sensitive to type I interferon pretreatment. unpublished.Forthcoming;
  5. Evans SS, Repasky EA, Fisher DT. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol. 2015 Jun;15(6):335-49. doi: 10.1038/nri3843. Epub 2015 May 15. Review. PubMed PMID: 25976513; PubMed Central PMCID: PMC4786079
  6. El-Radhi AS. Fever management: Evidence vs current practice. World J Clin Pediatr. 2012 Dec 8;1(4):29-33. doi: 10.5409/wjcp.v1.i4.29. eCollection 2012 Dec 8. Review. PubMed PMID: 25254165; PubMed Central PMCID: PMC4145646.
  7. Postic B, DeAngelis C, Breinig MK, Monto HO. Effect of temperature on the induction of interferons by endotoxin and virus. J Bacteriol. 1966 Mar;91(3):1277-81. PubMed PMID: 5929756; PubMed Central PMCID: PMC316024.
  8. Manzella JP, Roberts NJ Jr. Human macrophage and lymphocyte responses to mitogen stimulation after exposure to influenza virus, ascorbic acid, and hyperthermia. J Immunol. 1979 Nov;123(5):1940-4. PubMed PMID: 489966.
  9. Knippertz I, Stein MF, Dörrie J, Schaft N, Müller I, Deinzer A, Steinkasserer A, Nettelbeck DM. Mild hyperthermia enhances human monocyte-derived dendritic cell functions and offers potential for applications in vaccination strategies. Int J  Hyperthermia. 2011;27(6):591-603. doi: 10.3109/02656736.2011.589234. PubMed PMID: 21846195.
  10. Prow NA, Tang B, Gardner J, Le TT, Taylor A, Poo YS, Nakayama E, Hirata TDC, Nakaya HI, Slonchak A, Mukhopadhyay P, Mahalingam S, Schroder WA, Klimstra W, Suhrbier A. Lower temperatures reduce type I interferon activity and promote alphaviral arthritis. PLoS Pathog. 2017 Dec;13(12):e1006788. doi: 10.1371/journal.ppat.1006788. eCollection 2017 Dec. PubMed PMID: 29281739; PubMed Central PMCID: PMC5770078
  11. Zellner M, Hergovics N, Roth E, Jilma B, Spittler A, Oehler R. Human monocyte stimulation by experimental whole body hyperthermia. Wien Klin Wochenschr. 2002 Feb 15;114(3):102-7. PubMed PMID: 12060966
  12. Rao DV, Watson K, Jones GL. Age-related attenuation in the expression of the major heat shock proteins in human peripheral lymphocytes. Mech Ageing Dev. 1999 Feb 1;107(1):105-18. doi: 10.1016/s0047-6374(98)00143-2. PubMed PMID: 10197792.
  13. Parisi MM, Grun LK, Lavandoski P, Alves LB, Bristot IJ, Mattiello R, Mottin CC, Klamt F, Jones MH, Padoin AV, Guma FCR, Barbé-Tuana FM. Immunosenescence Induced by Plasma from Individuals with Obesity Caused Cell Signaling Dysfunction and Inflammation. Obesity (Silver Spring). 2017 Sep;25(9):1523-1531. doi: 10.1002/oby.21888. Epub 2017 Jul 14. PubMed PMID: 28707376
  14. Brenner IK, Castellani JW, Gabaree C, Young AJ, Zamecnik J, Shephard RJ, Shek PN. Immune changes in humans during cold exposure: effects of prior heating and exercise. J Appl Physiol (1985). 1999 Aug;87(2):699-710. doi: 10.1152/jappl.1999.87.2.699. PubMed PMID: 10444630.
  15. Dugue B, Lappanen E, Grasbeck R. Effect of thermal stress (sauna + swimming in ice-cold water) in man on the blood concentration and production of pro-inflammatory cytokines and stress hormones. Pathophysiology. 1998; 1001(5):149.
  16. Ernst E, Pecho E, Wirz P, Saradeth T. Regular sauna bathing and the incidence of common colds. Ann Med. 1990;22(4):225-7. doi: 10.3109/07853899009148930. PubMed PMID: 2248758.
  17. Thevarajan I, Nguyen T, Koutsakos M, Druce J, Caly L, van de Sandt C, Jia X, Nicholson S, Catton M, Cowie B, Tong S, Lewin S, Kedzierska K. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nature Medicine. 2020/03; doi: 10.1038/s41591-020-0819-2

 

 

DVG Health Expo

vom 25.03.-29.03.2020 auf der Kontakta-Messe in 91522 Ansbach

Wer möchte mithelfen? Wir suchen zur Unterstützung für die Zeit von Mi. 25.03. bis So. 29.03.20 (auch nur einzelne Tage) Helfer aus dem Bereich Gesundheit, Ärzte, Studenten, Krankenschwestern, Pflegekräfte, Therapeuten/-Innen, aber auch alle die gerne missionarisch unterwegs sind, die uns auf der Gesundheitsmesse unterstützen möchten.

Für Kost und Logi ist gesorgt

Kontakt:

Gerd Bonnetsmüller (Pastor): Festnetz: (09871) 422 99 59; Mobil: 0177-190 95 95

Roland Deutschländer: 0170-469 60 35

 

Blueberry Oatmeal Pancakes

Instructions

  1. Make the flax egg by mixing the ground flax with 6 tablespoons of water and letting it sit for 10 minutes. The consistency should resemble that of an egg.
  2. In a bowl, mix together the oats, milk, flax eggs, and oil. In a small separate bowl, mix the flour, baking soda, baking powder, sugar, and salt. Then combine both mixtures and stir, adding more milk if necessary for your desired consistency.
  3. Lightly grease a hot skillet or pan with additional oil. Pour ½-cup pancake rounds on the skillet and cook until bubbles form on the surface.
  4. Carefully drop 6–8 optional blueberries onto one side of each pancake, then flip and cook on the other side until golden brown.

Prep Time: approx. 30-40 minutes
Serving Size: 6 pancakes

by Daniel Velez

Source: https://lifeandhealth.org/food/blueberry-oatmeal-pancakes/171229.html

How to Lower Your Sodium Intake

Reduction of salt consumption by just 15 percent could save the lives of millions. If we cut our salt intake by half a teaspoon a day, which is achievable simply by avoiding salty foods and not adding salt to our food, we might prevent 22 percent of stroke deaths and 16 percent of fatal heart attacks—potentially helping more than if we were able to successfully treat people with blood pressure pills. As I discuss in my video Salt of the Earth: Sodium and Plant-Based Diets, an intervention in our kitchens may be more powerful than interventions in our pharmacies. One little dietary tweak could help more than billions of dollars worth of drugs.

What would that mean in the United States? Tens of thousands of lives saved every year. On a public-health scale, this simple step “could be as beneficial as interventions aimed at smoking cessation, weight reduction, and the use of drug therapy for people with hypertension or hypercholesterolemia,” that is, giving people medications to lower blood pressure and cholesterol. And, that’s not even getting people down to the target.

A study I profile in my video shows 3.8 grams per day as the recommended upper limit of salt intake for African-Americans, those with hypertension, and adults over 40. For all other adults the maximum is 5.8 daily grams, an upper limit that is exceeded by most Americans over the age of 3. Processed foods have so much added salt that even if we avoid the saltiest foods and don’t add our own salt, salt levels would go down yet still exceed the recommended upper limit. Even that change, however, might save up to nearly a hundred thousand American lives every year.

“Given that approximately 75% of dietary salt comes from processed foods, the individual approach is probably impractical.” So what is our best course of action? We need to get food companies to stop killing so many people. The good news is “several U.S. manufacturers are reducing the salt content of certain foods,” but the bad news is that “other manufacturers are increasing the salt levels in their products. For example, the addition of salt to poultry, meats, and fish appears to be occurring on a massive scale.”

The number-one source of sodium for kids and teens is pizza and, for adults over 51, bread. Between the ages of 20 and 50, however, the greatest contribution of sodium to the diet is not canned soups, pretzels, or potato chips, but chicken, due to all the salt and other additives that are injected into the meat.

This is one of the reasons that, in general, animal foods contain higher amounts of sodium than plant foods. Given the sources of sodium, complying with recommendations for salt reduction would in part “require large deviations from current eating behaviors.” More specifically, we’re talking about a sharp increase in vegetables, fruits, beans, and whole grains, and lower intakes of meats and refined grain products. Indeed, “[a]s might be expected, reducing the allowed amount of sodium led to a precipitous drop” in meat consumption for men and women of all ages. It’s no wonder why there’s so much industry pressure to confuse people about sodium.

The U.S. Dietary Guidelines recommend getting under 2,300 milligrams of sodium a day, while the American Heart Association recommends no more than 1,500 mg/day. How do vegetarians do compared with nonvegetarians? Well, nonvegetarians get nearly 3,500 mg/day, the equivalent of about a teaspoon and a half of table salt. Vegetarians did better, but, at around 3,000 mg/day, came in at double the American Heart Association limit.

In Europe, it looks like vegetarians do even better, slipping under the U.S. Dietary Guidelines’ 2,300 mg cut-off, but it appears the only dietary group that nails the American Heart Association recommendation are vegans—that is, those eating the most plant-based of diets.

Written By Michael Greger M.D. FACLM

Source: https://nutritionfacts.org/2019/11/19/how-to-lower-your-sodium-intake/

Omega-3 Breakfast Pudding

Ingredients

Quantity Unit Name
2 cups unsweetened soy or almond milk
1 ripe banana
¼ cup rolled oats
¼ cup chia seeds
cup fresh fruit, chopped
1 teaspoon alcohol-free vanilla
pinch of salt
Optional Add-ins: chopped nuts, unsweetened shredded coconut, and cinnamon

Instructions

  1. Blend banana with milk using a blender, hand-mixer, or fork.
  2. Stir in the remaining ingredients.
  3. Ladle into jars, cover, and place in refrigerator overnight. It will be ready to grab and go in the morning!

Prep Time: 5 minutes
Serving Size: 6 servings

– Jonathan Ewald –

Source: https://lifeandhealth.org/undo-my-disease/diabetes/on-the-go-breakfast-pudding/094629.html