The Legacy of HeLa

image

by Lisa Winter

Henrietta Lacks was integral to the formulation of the polio vaccine, cloning, mapping genes, biomedical ethics, the field of virology, and many other facets of modern medicine. But, she never looked down a microscope. She never invented anything. She never authored a scientific paper. She was not a scientist of any kind. Why is she featured on this website? In 1951, before she lost her fight with cervical cancer, samples were taken from her body, and that cell line is still alive today.

Traditionally, human cells had been difficult to culture. They died after a few short days, prohibiting long term experiments. However, when Dr. George Gey of Johns Hopkins University collected cells from Henrietta Lacks (and abbreviated the tube as HeLa), a lineage of cancer cells was discovered that had incredible resilience. The cells grew so quickly and readily, they were able to be distributed to scientists around the world for experimentation free of charge — without Henrietta’s knowledge or consent. At the time, bioethical standards were starting to come together. While informed consent may have been recommended, it was not required. The samples which had an abnormal longevity were eventually sent to laboratories around the world without the knowledge or consent of Henrietta or her family.

Why are these cells considered “immortal”? When DNA replicates, the telomeres at the end of chromosomes shorten with every round. After about 50 divisions, typical human cells reach what is known as the Hayflick Limit, where the telomeres have become too short to divide, and the cell undergoes apoptosis. Cancer cells do not respond in the same way. This, combined with the natural strength of Henrietta’s cells, has resulted in a cell lineage that has remained hardy throughout the years.

As of today, Henrietta’s cells have lived outside her body for over 60 years; twice as long as they lived inside her body. There are now other long lasting human cell lineages studied by scientists, but HeLa cells were the first, and continue to be the most popular.

As genomic sequencing has become more commonplace, questions about the Lacks family’s privacy have come to the forefront. Earlier this year, papers published HeLa’s genome without first getting authorization from the family. After months of negotiations, it was announced last month that research dealing with the sequence can continue. The only caveat is that the work has to promote the greater good for humanity and researchers must do whatever they can to ensure the Lacks’ privacy.

Read more at http://www.iflscience.com/health-and-medicine/legacy-hela#gl6OFxK6UtRuvut2.99

Epigenetics: Bridge between Nutrition and Health




Nutrients can reverse or change epigenetic phenomena such as DNA methylation and histone modifications, thereby modifying the expression of critical genes associated with physiologic and pathologic processes, including embryonic development, aging, and carcinogenesis. It appears that nutrients and bioactive food components can influence epigenetic phenomena either by directly inhibiting enzymes that catalyze DNA methylation or histone modifications, or by altering the availability of substrates necessary for those enzymatic reactions. Continue reading

Autism risk spotted at birth in abnormal placentas

Researchers at the Yale School of Medicine have figured out how to measure an infant's risk of developing autism by looking for abnormalities in his/her placenta at birth, allowing for earlier diagnosis and treatment for the developmental disorder. The findings are reported in the April 25 online issue of Biological Psychiatry.

One out of 50 children are diagnosed with an autism spectrum disorder in the United States each year, according to the Centers for Disease Control and Prevention (CDC), but the diagnosis is usually made when these children are 3 to 4 years of age or older. By then the best opportunities for intervention have been lost because the brain is most responsive to treatment in the first year of life.

Senior author Harvey Kliman, M.D., research scientist in the Department of Obstetrics, Gynecology & Reproductive Sciences at the Yale School of Medicine, and research collaborators at the MIND Institute at the University of California, Davis, have found that abnormal placental folds and abnormal cell growths called trophoblast inclusions are key markers to identify newborns who are at risk for autism.

Kliman and his team examined 117 placentas from infants of at-risk families, those with one or more previous children with autism. These families were participating in a study called Markers of Autism Risk in Babies – Learning Early Signs. Kliman compared these at-risk placentas to 100 control placentas collected by the UC Davis researchers from the same geographic area.

The at-risk placentas had as many as 15 trophoblast inclusions, while none of the control placentas had more than two trophoblast inclusions. Kliman said a placenta with four or more trophoblast inclusions conservatively predicts an infant with a 96.7% probability of being at risk for autism.

Currently, the best early marker of autism risk is family history. Couples with a child with autism are nine times more likely to have another child with autism. Kliman said that when these at-risk families have subsequent children they could employ early intervention strategies to improve outcomes. "Regrettably couples without known genetic susceptibility must rely on identification of early signs or indicators that may not overtly manifest until the child's second or third year of life," said Kliman.

"I hope that diagnosing the risk of developing autism by examining the placenta at birth will become routine, and that the children who are shown to have increased numbers of trophoblast inclusions will have early interventions and an improved quality of life as a result of this test," Kliman added.

Other authors on the study include Kaitlin Anderson, Kristin Milano, and Saier Ye of Yale University; and Cheryl Walker, Daniel Tancredi, Isaac Pessah, and Irva Hertz-Picciotto of UC Davis.

This work was supported by the National Institutes of Health (1 P01 ES11269 and R01 ES 015359), the U.S. Environmental Protection Agency through the Science to Achieve Results (STAR) program (R829388 and R833292), the MIND Institute at the University of California, Davis, and the Yale University Reproductive and Placental Research Unit.

Citation: Biological Psychiatry, Published online (April 25, 2013)

Karen N. Peart | Quelle: EurekAlert!
Weitere Informationen: www.yale.edu

Enhancing regeneration of the sick liver in acute or chronic liver failure (article in German languange)

Aktuell publiziert in CELL


Die Grafik interpretiert auf humorvolle Weise die Prometheus-Sage aus Sicht der aktuellen Forschungsarbeit: Die Leber ist ein Organ mit einem sehr hohen Regenerationsvermögen. Dies beschreibt bereits die griechische Sage um Prometheus, der den Zorn des Gottes Zeus auf sich zog: Zur Strafe sandte der Göttervater dem gefesselten, über eine Klippe hängenden Prometheus einen Adler, der täglich an dessen Leber zehren durfte – die sich immer wieder erneuerte. Durch die verbesserte Leberregeneration durch Hemmung des MKK4 Proteins kommt der Adler an seine Grenzen.

Durch die Hemmung eines neu identifizierten Gens ist es bei Mäusen gelungen, die Regenerationsfähigkeit der Leber dramatisch zu steigern. Dies konnten Wissenschaftler vom Universitätsklinikum Tübingen, der Medizinischen Hochschule Hannover und des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig in einer gemeinsamen Arbeit zeigen.

Die aktuell in der renommierten Wissenschaftszeitschrift CELL publizierten Ergebnisse sollen zur Medikamentenentwicklung genutzt werden, um in Zukunft die Behandlung von Patienten mit akuten oder chronischen Lebererkrankungen zu verbessern.

Die Leber ist ein Organ mit einem sehr hohen Regenerationsvermögen. Eine gesunde Leber kann innerhalb kurzer Zeit einen Verlust von bis zu zwei Dritteln der Lebermasse kompensieren. Doch was passiert, wenn die Leber sich aufgrund einer akuten oder chronischen Leberschädigung nicht mehr selbst regenerieren kann und damit das Leben des Betroffenen am seidenen Faden hängt? „In solchen Fällen kommen die Patienten langfristig nicht um eine Transplantation herum“, erklärt Leberspezialist Professor Dr. med. Lars Zender vom Universitätsklinikum Tübingen. „Jährlich sterben weltweit mehr als eine Million Menschen an einem chronischen oder akuten Leberversagen, viele von ihnen, weil sie die Wartezeit auf ein Ersatzorgan nicht überleben“, bedauert Professor Zender, „wir erhoffen uns durch diese Entdeckung neue Therapiemöglichkeiten zur Steigerung der Leberregeneration, so dass der Patient bis zur Transplantation stabilisiert werden oder gegebenenfalls auf die Transplantation verzichtet werden kann.“

Gemeinsam mit einem Forscherteam des Universitätsklinikums Tübingen, der Medizinischen Hochschule Hannover und des Helmholtz-Zentrums für Infektionsforschung (HZI) Braunschweig gelang es Zender, eine neue therapeutische Zielstruktur, ein Protein namens MKK4, eine sogenannte Kinase, und mit ihm das dazugehörige Gen, zu identifizieren.
Wird das neu identifizierte Zielgen gehemmt, so kommt es im Mausmodell zu einer dramatisch gesteigerten Regenerationsfähigkeit der Leber“, so Torsten Wüstefeld, Erstautor der Studie. Das Forscherteam konnte ferner zeigen, dass die Hemmung dieser Kinase zu einem deutlich verbesserten Überleben in präklinischen Maus-Krankheitsmodellen des akuten oder chronischen Leberversagens führte.

„Ziel ist es, die genetischen Daten für die Entwicklung neuer Medikamente und pharmakologischer Therapien zu nutzen, um bei Patienten mit akuten oder chronischen Lebererkrankungen die Regenerationsfähigkeit der Leber zu steigern“, erläutert Professor Zender. „Wir sind optimistisch, dass in einigen Jahren Medikamente verfügbar sein werden, entsprechende klinische Studien sind geplant.“

Details
Mit Hilfe genetischer Screens entschlüsselten die Forscher Schaltkreise, welche die Regenerationsfähigkeit von Leberzellen beeinflussen. Die Arbeitsgruppe entwickelte eine Methode, Kollektionen von short hairpin RNAs (sogenannte shRNA Bibliotheken) in Mäuselebern einzubringen. Jede shRNA hat ein anderes Zielgen und reguliert dieses in der Leberzelle herunter. Je nachdem, wie eine bestimmte shRNA die Regeneration der Leberzellen (Hepatozyten) beeinflusst, wird die Population der Leberzellen, die genau diese shRNA trägt, entweder zu- oder abnehmen. Am Ende eines Experiments wurden die Mäuselebern entnommen und mittels einer bestimmten Sequenzierungstechnologie (deep sequencing) wurde ermittelt, welche shRNAs die Leberregeneration wie beeinflussen. Alle Screens und auch die späteren Validierungsexperimente wurden in vivo in der Mausleber durchgeführt.

Zur Person
Prof. Dr. med. Lars Zender leitet seit April 2012 in der Medizinischen Universitätsklinik Tübingen, Abteilung Gastroenterologie, Hepatologie, Infektionskrankheiten, die Sektion für translationale* gastrointestinale (den Magen-Darm-Trakt betreffende) Onkologie. Zuvor war er als Arzt und Wissenschaftler an der Medizinischen Hochschule Hannover und dem Helmholtz-Zentrum für Infektionsforschung (HZI) tätig, wo ein großer Teil der Daten erhoben wurde. Die Forschungsarbeiten wurden unter anderem von der Deutschen Forschungsgemeinschaft im Rahmen des Sonderforschungsbereiches SFB/TRR77 zum Thema „Leberzellkarzinom“ und des Exzellenzclusters für regenerative Medizin „REBIRTH“ gefördert. Zender wurde im März 2013 mit dem Deutschen Krebspreis der Deutschen Krebsgesellschaft ausgezeichnet. Ein besonderer Schwerpunkt seiner Forschung besteht in der Identifizierung neuer Krebsgene, welche an der Entstehung von gastrointestinalen Tumoren beteiligt sind und zur Entwicklung effektiver neuer Tumortherapien genutzt werden können.
* Die translationale Medizin beschäftigt sich mit der Übersetzung von Forschungsergebnissen in die klinische Praxis, sie ist Schnittstelle zwischen präklinischer Forschung und klinischer Entwicklung. Durch sie soll Forschungswissen in die Behandlung von Patienten eingehen.

Titel der Originalpublikation

A direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration
Torsten Wuestefeld, Marina Pesic, Ramona Rudalska, Daniel Dauch, Thomas Longerich,Tae-Won Kang, Tetyana Yevsa, Florian Heinzmann, Lisa Hoenicke, Anja Hohmeyer, Anna Potapova, Ina Rittelmeier, Michael Jarek, Robert Geffers, Maren Scharfe, Frank Klawonn, Peter Schirmacher, Nisar P. Malek, Michael Ott, Alfred Nordheim, Arndt Vogel, Michael P. Manns, Lars Zender
DOI: 10.1016/j.cell.2013.03.026

Medienkontakt

Universitätsklinikum Tübingen
Medizinische Klinik, Abteilung Gastroenterologie, Hepatologie und Infektiologie (Ärztlicher Direktor: Prof. Nisar Malek)
Sektion für translationale gastrointestinale Onkolgie
Prof. Dr. med. Lars Zender
Hoppe-Seyler-Str. 3, 72076 Tübingen
Tel. 07071/29-8 41 13, Fax 07071/29-2 50 62
Lars.Zender@med.uni-tuebingen.de

Dr. Ellen Katz | Quelle: Informationsdienst Wissenschaft
Weitere Informationen:
www.medizin.uni-tuebingen.de/Patienten/Kliniken/Medizinische+Klinik/Innere+Medizin+I.html